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- Time Discretization of Continuous-Time Filters
and Smoothers for HMM Parameter Estimation
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Abstract—In this paper we propose algorithms for parameter
estimation of fast-sampled homogeneous Markov chains observed
in white Gaussian noise. Qur algorithms are obtained by the
robust discretization of stochastic differential equations involved
in the estimation of continuous-time Hidden Markov Models

(HMM’s) via the EM algorithm. We present two algorithms: The

first is based on the robust discretization of continuous-time filters
that were recently obtained by Elliott to estimate quantities used
in the EM algorithm. The second is based on the discretization of
continuous-time smoothers, yielding essentially the well-known
Baum-Welch re-estimation equations. The smoothing formulas
for continuous-time HMM’s are new, and their derivation in-
volves two-sided stochastic integrals. The choice of discretization
results in equations which are identical to those obtained by
deriving the results directly in discrete time. The filter-based
EM algorithm has negligible memory requirements; indeed, in-
dependent of the number of observations. In comparison the
smoother-based discrete-time EM algorithm require the use of the
forward-backward algorithm, which is a fixed-interval smoothing
algorithm and has memory requirements proportional to the
number of observations. On the other hand, the computational
complexity of the filter-based EM algorithm is greater than that
of the smoother-based scheme. However, the filters may be suit-
able for parallel implementation. Using computer simulations we
compare the smoother-based and filter-based EM algorithms for
HMM estimation. We provide also estimates for the discretization
error.

Index Terms— Hidden Markov Models, robust discretization,
expectation maximization algorithm, parameter estimation.

I. INTRODUCTION

N this paper we propose algorithms for parameter estima-

tion of fast-sampled homogeneous Markov chains observed
in white Gaussian noise. The parameters estimated include
transition probabilities and levels (drift coefficients) of the
Markov chain, and the noise variance. Our algorithms are
obtained by the robust. discretization of stochastic differen-
tial equations involved in the estimation of continuous-time
Hidden Markov Models (HMM’s) via the EM (Expecta-
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tion—-Maximization) algorithm. The EM algorithm is an itera-
tive ML (Maximum-Likelihood) parameter estimation scheme
that can be used to estimate the parameters of Markov pro-
cesses observed in white Gaussian noise, see [1], (3], (8],
and [12].

The contributions of this paper can be outlined as follows:

1) Parameter Estimation Algorithms: We present two
algorithms to estimate the parameters of the HMM: The first is
based on the robust discretization (see below) of continuous-
time filters that were recently obtained by Elliott [7] to
estimate quantities used in the EM algorithm. We term this the
filter-based EM scheme. The second is based on the robust
discretization of continuous-time smoothers, yielding essen-
tially the well-known Baum-Welch re-estimation equations.
We term this the smoother-based EM schemie.

It turns out that the filter-based scheme has negligible mem-
ory requirements compared to the smoother-based scheme.
Using a T'// A-length noisy observation sequence of an /V-state
Markov chain, where A is the time step size, the smoother-
based algorithm requires a memory of NT'/A, whereas the
filter-based algorithm requires memory independent of 7'/ A.
However, the computational complexity of the filter-based
EM algorithm at each time instant is O(N*) (for an N-state
Markov chain) compared to O(N?) for the smoother-based
scheme. Despite the higher computational cost, the various
filters in the filter-based scheme are decoupled and are suitable
for paralle]l implementation on a multiprocessor system.

The continuous-time smoother based EM scheme that we
present is new and its derivation involves two-sided stochastic
integrals.

2) Robust Discretization: We perform the robust dis-
cretization mentioned above as follows: First, by using the
approach due to Clark [2], we derive the ‘robust versions
of the differential equations that compute various quantities
required in the EM algorithm. By robust, we mean that the
differential equations define versions of the filters which
depend continuously on the observation path. This is a useful
property from the practical point of view, see Clark [2].
The discrete-time algorithms are obtained by discretizing the
resulting robust filters. We ‘provide also estimates for the
discretization error. - ‘

3) Probabilistic Interpretation: We give a probabilistic
interpretation to our numerical schemes. In particular, the time-
discretization is chosen to yield equations which are identical
to the filtering and smoothing equations for a discrete-time
HMM which are obtained in Elliott [6] and Levinson, Rabiner,
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and Sondhi [8], repectively. This is an important consistency
property in that it links discretized ‘continuous-time results
with discrete-time results. We emphasize that other choices
in the discretisation may lead to other recursions which do not
correspond to standard discrete-time HMM formulas.

4y Computer Simulations: Using computer simulations we
compare the filter-based and smoother-based EM algorithms.
Both algorithms yielded satisfactory estimates in our simu-
lations; however, we found that the smoother-based scheme
had better numerical properties than the filter-based scheme.
Important implementation aspects such as normalization are
also considered.

The paper is organized as follows: In Section II we present
our continuous-time robust filters. In Section III the discretized
filters are derived. Also pathwise error estimates are obtained.
In Sections IV and V ‘the smoothing analogs of Sections
II and IIT are presented. Section VI deals with important
implementation issues like normalization, and in addition, the
estimation of the noise variance is discussed. In Section VII,
simulation examples are presented that compare the smoother-
based and filter-based algorithms.

II. CoNTINUOUS-TIME HMM ESTIMATION (FILTERING)

In this section we first briefly review the EM algorithm
(Section II-A). We then describe the continuous-time model in
Section II-B and review the continuous-time filters derived in
[7] in Section II-C. In Section II-D we derive robust versions
of the filters.

A. Review of EM Algorithm

The basic idea behind the EM algorithm is as follows
[5]. Let {F,0 € ©} be a family of probability measures
on a measurable space (€2, F) all absolutely continuous with
respect to a fixed probability measure Fo, and let Y C 7. The
likelihood function for computing an estimate of the parameter
# based on the information available in Y is

L(§) = E [dpe y}

P,
and the MLE is defined by
6 € argmax L(6).

4SC

In general, the MLE is difficult-to compute directly. The EM
algorithm- provides an iterative approximation method starting
from an initial model estimate 6. Each iteration of the EM
algorithm consists of two steps:

Step 1 (E-Step): Set 6 = ép and compute Q(-, ), where

/

P,
Q(0'.0) = B [1og ¢ v

Step 2 (M-Step): Find
0,41 € argmax Q(6',6).
'€
The sequence generated {0},, p > 0} gives nondecreasing

values of the likelihood function with equality if and only if
Op1 = bp.

B. Continuous-Time Model

Let {X:¢t > 0} be a continuous-time Markov chain
defined on a probability space (€2, F, P) with state space S =
{e1, €2, -, en}. Without loss of generality, we assume that e;
is the unit column vector of R" with 1 in the ith position. Let
(-,) denote the scalar product in R™. If u = (u,- -+, un),
then

N .
<Xt7u> = Z Uy 1(Xi=5i)' ’
i=1

Let o be the probability distribution of Xg, and 4 = (ay;)
be the transition rate matrix (infinitesimal generator), i.e.

P(Xt+h = elet = 6i) = &‘j + aijh + O(h) (2.1)

We assume that X, is not directly observed, instead we observe
the scalar process '
t .
Y = / (Xr,g) dr +we (2.2)
0
where {w:,t > 0} is a standard Brownian motion' (unit
variance) on (Q,F, P), which is independent of {X;,¢ >
0}. The case of a d-dimensional observation could also. be
considered, and we assume d = 1 only for the sake of
simplicity. Also g = (g1,---,gn) are the levels or drift

“coefficients of the Markov chain. Write F; = o(X,,ys,0 <

s <t)and YV, = o(ys,0 < s.< 1),

The aim of the estimation problem is to obtain the MLE
for the unknown parameters A and g. A filtering approach for
doing so using the EM algorithm is presented in [1] and [7], see
also [3], [14]. In the EM algorithm, updating the estimates of
A and g requires computation of the conditional expectations
of the following quantities given the observation history:

1) State of the Markov chain.

2) Occupation time of the Markov chain in state e; until

time ¢: )

t
Jti :/ (Xs,&’) ds.
o .

3) Number of jumps of the Markov chain from state e; to
state e; until time #: '

. t
N = [(Kewei) (@Xeres) fori £
0

4) Level integral in state e; up to time £:

T
Gy :/0 (Xs,ei} dys.
The update from A4, g to A’, ¢’ is given by

’_ E [N IZJ Iy T] . .
aij = W for ¢ 76 s
and

,  ElGr|Vr]

* T BT
where the conditional expectations are computed using the
parameters A and g. In this way, a sequence of parameter
estimates is generated which gives nondecreasing values of
the likelihood function.

(2.3)
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Notation: For any {F;,t > O0}-adapted and integrable
process {H:,t > 0}, denote the unnormalized conditional
expectations as

o(Hy) = E[HA¢| V) (2.4)

where P is a probability measure on (Q, F) defined by setting
the Radon-Nikodym derivative

P ¢ 1 5
Fﬂ —At—exp{/o (X5, 9) dys—§/; (Xs,9) ds}.

By the Bayes rule we have ,
E[H|Yy] = o(Hy)/o(1).

In the particular case where H, = 1, we use the notation

Pt = 0O (Xt)
Finally, let B denote the diagonal matrix

B =diag(glv"'agN)'
Note that Be; = g;e;. '

C. Continuous-Time Filters

From (2.3) above, our objective is to compute o(Hr) for
Hp = N ,Gl or J&. It is not possible in general to obtain
equations directly for o(Hy), but it is possible to obtain
equations for o(H:X,), i.e., for the N-dimensional vector
whose ith component is

(o(Hi X)), €) = E(l(thei)HtAtlyt)'

One would then obtain o(Hr) as o(Hr) = {c(HrXr),1)
where 1 denotes the column N-vector of ones. The equations
for o(H; X}) are presented in Elliott [7]. Note that the filtering
equation (2.7) for the number of jumps was first obtained in
Zeitouni and Dembo [14].

State (Wonham filter) [13]:

t t
pt=7ro+/ A'p, dS+/ Bps dys.
0 0

Occupation Time:

2.5)

t t
o(JiX;) = /0 A*a(JEX,) ds + /0 Bo(JiX,) dys

t
+/ {ps, €i)e; ds.
0
Number of Jumps:
iy t » ) t B
U(N:JXt):/ A*a(NJ X,) ds+/ Ba(N9X,) dy,
0 0
t
-{—/ (ps,ei) (A%e;,e5)e; ds. 2.7
0

Note that in (2.7), <A*€i, Cj) = Qg4
Level Integrals: :

T t
a(GiX,) = /0 A*o(GiX,) ds + /0 Bo(GiX,)) dy,

; t t
+/ (ps,ei>Bei ds +/ (p.suei)ei dys" (28)
0 0

Note that in (2.8), Be; = gie;.

2.6)

Remark 2.1: The re-estimation formulas (2.3) read now

o Xr), 1)
Y {o(JpXr), 1)
and
g Lo Xa). 1)
"t {o(UpXr),1)

D. Robust Filters

In [2], Clark introduced robust reformulations of the non-
linear filtering equations, and showed that the conditional
probability distribution has a version which depends contin-
uously on the observations. From a practical point of view,
this continuous dependence is a desirable robustness property,
and leads to robust approximations.

In this section, we follow Clark’s approach and define robust

- versions of the filters obtained by Elliott [7]. These will be

used in the next section to derive robust numerical algorithms.
We ‘introduce the processes

¢; =exp {giye — 3g:|*t}
®; =diag(¢;,- -+, ¢ ) = exp{By, — $ B*t}.

Note that ®.e; = ¢le;. For any {F;,t > 0}-adapted and
integrable process {H;,¢ > 0}, we define

E(HtXt) = @;IU'(HtXt).

(2.9)

(2.10)

State: Using Ito’s rule, one can show that p, = E(Xt) isa
process of finite variation and solves the ODE
;ld;n =07 A*®p, @11
with initial condition p, = mo. Equation (2.11) was derived
in [2], where it was shown that B, is a locally Lipschitz
continuous function of (y(s),0 < s < t), and (2.11) can
be used to define a version of the conditional probability
distribution which enjoys also this continuity property.

In the same way, robust versions T(H;X;) of the filters
o(H;X;) for the processes H; = Ji,N;’ and G% can be
obtained. They read:

Occupation Time:

%E(Jth) =07 A, G (JIXy) + (Bei)es  (2.12)
with initial condition 7(J§Xy) = 0.
Number of Jumps: ‘
%E(N;'jx,) =&, A*®,5(N X,)
(D) (B LA De e5)e;  (2.13)

with initial condition (N’ Xo) = 0. Note that, in (2.13),
(@ 1A*Biei e;) = aijdi/ 1.

Level Integrals:

do(GiX:) = B A*® G (GiX,) dt + (By, ei)e; dyr (2.14)
with initial condition F(G)X,) = 0.

Note that 7(J; X;) and &(N,’ X,) are finite variation pro-
cesses solving ODE’s, while 7(G}X;) is not a finite variation
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process, and is the solution of an SDE. However, using
integration by parts, the stochastic integral in (2.14) can be
written in terms of a standard integral, see (2.17) below.

The following theorem shows that these differential equa-
tions define versions of the filters which depend continuously
on the observation path. Let

A
lyll = sup |y(t)|
0<t<T

denote the sup-norm of (y(¢),0 < ¢ < T).
Theorem 2.2: For Hy = J}, N;° or G, define 7(H,X;) via
(2.11)-(2.14). Then, for all 0 < ¢ < T

A ®G(HX:)
W(HtXt) = (@tﬁh 1)

defines a locally Lipschitz continuous version of E[H;X |}
|7 (H X)) [y1] = 7(He Xe)[y2]| £ Kllyr — w2l (2.15)

-where the constant K~ depends on [[y1]| and [ly2||-
Proof: For H, = J;, N}, or Gi, define o(H:X;) by

O'(HtXt> = étﬁ(HtXt)

where G(H;X:) is defined by the robust equations
(2.11)—(2.14). Then by Ito’s rule it follows that o(H:X;)

is a solution of the -corresponding SDE given in
Section II-D. These equations have unique solutions;
namely, the corresponding unnormalized conditional
expectations. Therefore, after normalizing we have

E[HtXtD)t] = W(HtXt)[y] a.s.

To prove the local Lipschitz continuity assertion, we follow
Clark [2, Theorem 4], where the following inequalities were
proven:

[D4[y1] — Delye]l < Kllyr — vol|

for some constant K depending on [|yi1]| and ||lyz||, and

(De[y]Bely], 1) > v >0

for all ¢ > 0, where v depends on [|ly||. These inequalities
imply that 7, = 7(X}) satisfies (2.15) (with H; = 1).

For H; = J! or N;’, one can use the same method as in
[2] to obtain

[T(He Xe)[y1] = T(H Xe)[y2ll < Kllyr — y2]]

from which (2.15) follows.

For H, = G, one has to take into account the stochastic
integral in (2.14). However, since p, = o(X;) is a finite
variation process, the stochastic integral can be rewritten as

(2.16)

t t
/ <ﬁs7ei> dys :yt(z_jtv ei) _/ ys<q)s_1A*¢)sﬁs)ei> dS
0 0
2.17)

If we denote the right-hand side of this equation by F7, then
clearly

|F{ 1] = Felwall < Kllys — vl

where K depends on ||y; || and ||yz]||. Therefore, we can write

S(GiX)) = /0 871y A" 8, ]o(G X, )] ds + Fily]

and hence (2.15) follows by standard arguments based on the
Gronwall lemma. , O

[II. Tove DISCRETIZATION OF FILTERING EQUATIONS

The purpose of this section is to provide computable approx-
imation of the continuous time equations described in Section
II-C, for p: = 0(Xy),0(JiXy),0(GiX,), and (N, Xy).

Throughout the paper, a regular partition

O=ti<t1 < " <tpo1 <tp <+ =

is considered, with constant time step A = £, — t,,;. Write
M = [T'/A] for the largest integer such that MA < T.

Basically, two different approaches are available to obtain
discrete filtering equations. )

1) One approach is to sample the continuous time ob-
servations {y;,t > 0} and approximate the original
continuous-time HMM: the filtering equations for the
discrete-time HMM would then provide an approxima-
tion of the filtering equations for the continuous-time
HMM.

2) The other approach is to directly discretize the filtering
equations, or their robust versions obtained in'Section
I-D. ,

As far as state estimation is concerned, it is shown in
Clark [2] that reasonable discretization schemes of the robust
equation (2.11) could also provide discretization schemes for
the corresponding Duncan-Mortensen—Zakai equation (2.5),
and give rise to interesting probabilistic interpretation, thus
linking the two above mentioned approaches. '

The purpose here is to review the results of [2] for the
state estimation problem, and extend these results to the HMM
parameter estimation problem. Following [2], a reasonable
approximation of (2.11) between sampling times ¢,_1 and %,
would look like

tn
ﬁtn :ptn,l +/ q)s—lA*(bsp‘s ds
tp—1
2Py, _, + 0y A0y B A

for some t,—; < t},,t!/ < t,. Various approximations can
be obtained, for different choices of ¢!, and ¢//. Indeed, we
will make choices which result in the approaches 1) and 2)
mentioned above coinciding, and yielding standard discrete-
time formulas. Choosing ¢, = t;{ = t,—1 gives

Pr, = [[+A® L AP, ], ,
which results in the following éxplicit approximation:

D= +A®," A®, _ 1P, ;.

tn_1

(3.1

Multiplying both sides by @, gives the following approxima-
tion for the Duncan—Mortensen—Zakai equation (2.5):
Pn = (I)tn oy [I+ AA*]pn—l =y, [I + AA*]pn—l

tn—1

(32)
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where

Ui = 9,0, = exp {Bly: — ] — B[t — 3]}
and

U, =0t
Note that

v, = Qtnq)t—nl_l = diag (w}w e )w’ilv)

with 9%, = ¢ /@i . Other schemes could be obtained for
different choices of ¢, and t,.

A Discrete-Time Approximate Model

Note that, for a small enough time step A>0, P =
[I + AA] = (mi;) is a stochastic matrix. Define then the
following fast-sampled observations:

1
=y

= Z[yt,, — Ytns]
and the following discrete-time HMM to be used throughout
the paper: .

{Xn,n > 0} is a Markov chain with state space S =
{e1,---,en} and transition probability matrix P, related to
the observation sequence {z2,n > 0} through the equation

Zﬁ =g9(Xn) + wr%

where {w5,n > 0} is a Gaussian white noise sequence, with
covariance matrix A717,

It is then straightforward to.check that the approximation
scheme (3.2) is exactly the filtering equation (Baum’s forward
equation) for the state estimation in this discrete-time HMM.

Let us write

Fp=0(Xp,28,0< k < n)
and ,
Z, =0(28,0 <k < n).

In the EM algorithm for the discrete-time model above,
updating the estimates of P and g requires computation of
the conditional expectations of the following quantities given
the observation history: )

1) State of the Markov chain.

2) Number of visits of the Markov chain in state e; until

time n
n
J:» = Z(Xk_l,ei).
k=1
3) Number of transitions of the Markov chain from state
e; to state e; until time n
n
N7 =3 "(X0_1.e) (Xn.e;).
k=1
4) Level sum in state e; up to time n
n
G = (Xp_1,e)2p.
k=1 ’

The update from P,g to P’, g’ is given by

7r/-~ :E[N}\fﬁZM]
Y ElJy|2u]
and
. _ElGy|2m]
9i =y (3.3)
E[Jy|Zu]

where the conditional expectations are computed using the
parameters P and g. In this way, a sequence of parameter
estimates is generated which gives nondecreasing values of
the likelihood function for the discrete-time HMM.

Remark 3.1: The main advantage of the approach adopted
here for time discretization is that the sequence of parameter
estimates generated by the re-estimation formulas (3.3) will

“automatically converge to a stationary point of the likelihood

function for the discrete-time model. Therefore, provided the
likelihood function for the discrete-time model is close enough
to the likelihood function for the original continuous-time
model, the sequence of parameter estimates generated by the
re-estimation formulas (3.3) will be reasonably close to a
stationary point of the likelihood function for the original
continuous-time model.

In discrete time, the conditional expectations involved in
the EM algorithm (3.3) are traditionally computed using
smoothing (Baum—Welch re-estimation equations), rather than
filtering. For the purpose of comparison, in this section we
consider the use of filtering in the discrete-time EM algorithm
(see [1], where such a comparison is made for diffusion
processes). Time-discretized numerical schemes are obtained
for the continuous-time filtering equations. Following [2], error
estimates are provided using the robust filters.

B. Discrete-Time Filters

Based on the previous remarks, the approach adopted below
to discretize the filtering equations for o(J{ X;), (N’ X;) and
o(GiXy), is to use the corresponding filtering equations for
the approximate discrete time HMM introduced above. The
filtering equations for parameter estimation in discrete-time
HMM are derived in Elliott [6].

State: See (3.2), to be compared with (2.5). The computa-
tional cost is O(N?) at each time instant.

Occupation Time: The filter o(J; Xy,) for the occupation
time in state e; in the continuous time HMM, is approximated
by A times the filter o(J¢X,,) for the number of visits in
state e; in the discrete time HMM. The equation for the filter
o(JiX,,) is (where p, is defined by (3.2))

o(JiXp) = VP o(Ji 1 Xno1) + (Pr-1,€) UnPe; (34)
where P* = [I + AA*]. Multiplying both sides of (3.4) by
@;ﬂl gives :

F(ILX,) = [T+ A A*®y,_]6(Ji_1 Xn1)

+ (Pp_r ) I+ A, APy _Je;  (3.5)

to be compared with (2.12). The computational cost is O(N3)
at each time instant.
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Number of Transitions: The filter a(NtiZ Xy, ) for the num-
ber of jumps from state e; to state e; in the continuous-time
HMM, is approximated by the filter o( N X,,) for the number
of transitions from state €; to state e; in the discrete-time
HMM. The equation for the filter o(NFX,,) is

(N9 X,) =V, P*o(NY X, 1)
+ (pr—1,€i) (TP e;, e5)e;. (3.6)

Multiplying both sides of (3.6) by &, 1 gives

FNIX,) =1+ A8 A* @, JG(NZ  Xn )

+ AP, _1,€:) <¢)tn VAT, es,eide;  (3T)

to be compared with (2.13). The computational cost is O(N*) -

at each time instant.

Level Integral: The filter a(G’,;; X, ) for the level integral
in state ¢; in the continuous-time HMM, is approximated by
A times the filter o(G?, X,,) for the level sum in state e; in the
discrete-time HMM. The equation for the filter o(G% X,,) is

o(GLX,) =0, P (Gl 1 Xn- 1)+z (Dp_1,€:) ¥, P*e;.

(3.8)
Multiplying both sides of (3.8) by ®; ! gives

F(GLXn) = [T+ AD 1 A*D, | [5(Ch_1 Xp1)
+ 28 By, eI + AT A*Dy _le;  (3.9)

to be compared with (2.14). The computational cost is O(N?)
at each time instant.
Remark 3.2: The re-estimation formulas (3.3) read now

L {e(NgXan), 1)
Yo {o(JyXm), 1)
and .
oGy X))
C o XM), 1)

Direct implementation of the filters for the occupation
time, number of jumps, and level integrals requires, re-
spectively, O(N?%), O(N*), and O(N®) multiplications at
each time instant. However, notice that the equations for
o(JEX,), o(N¥X,), and 0(G%X,,) are all decoupled, and
hence can be solved in parallel for each 4,5 =1,---, V.

Pathwise error estimates can now be obtained in a way
similar to [2, Theorem 7]. This is the purpose of the remainder
of this section.

C. Pathwise Error Estimates

As above, let ||y|| denote the sup-norm of (y(¢),0 < ¢ < T),
and let
wa(y) = max{|y(t) —y(s)|: 0 < 8,8 < T, |t — 5| < A}

denote the modulus of continuity.

Theorem 3.3: For H, = Jtl,N” or G¢, define U(HtXt)
via (2.11)—(2.14). Similarly, for H,=A- J’ N” or A- Gl
define o(H, X,,) via (3.1}, (3.5), (3.7), and (3.9). Then, for all
n,A such that 0 < ¢, < T

[0(He, Xe, )ly] = T(Ha X))l < K[A+wa(y)]  (3.10)

where the constant K depends on ||y||.
Proof: The result is proved in [2, Theorem 4] for H; =1
and H, = 1.
Let us first consider the case Hy = J; and H,, = A-J.. We
introduce the notations 7; = 7(J; X;), and 7, = A-7(JE X.).
From (2.12)

tn tn
Gt, = Ot,_, +/ O1A DT, ds —|—/ (D ei)es ds
tn—1 ’ tn—1

whereas from (3.5)

Op = [I + Aq)t_nl.lA*q)tn_L]E’ﬂ—l + A(ﬁnfl’ ei)
T +AdE A, e

The difference ¢, = 7y, — 0, satisfies the following recur-
rence:

en =[[+ A0 A*®_ Jen s

tn :
+/ @140, — ;1 A", T, | ds

tn—1

tn .
+/ (ps "ﬁtn_la 6i>6i ds
tn—1 .

+ A(ﬁtndl - ﬁn 1 675>62‘
+ A% (D, 1, )@ AT e
'Therefore

lealyll < len-1y]le“® + KA[A +wa ()]

where the constants C' and K depend on ||y||, and hence (3.10)
follows by the discrete Gronwall lemma.

The proof for Hy = N} and H, = N¥ is quite similar, -
and is therefore omitted.

For H; = G! and H, = A -G’ one has to take into
account the stochastic integral in (2.14). Actually, the idea
is to use an integration by parts ag in the proof of Theorem
2.2. We introduce the notations &; = o(GiX,), and &, =
A -7(G: X,). From (2.14)

tn
Ot, =0t,_, +/
tn—1

tn
:Etn—l + f @;IA*QSE.S dS
trn—1 '

7

. tn
71A*D,7, ds + /

trn—1

<ﬁs7 €i>6i dys

+ (Y, — Yt [Py, CiVEs

t’rb
—/ » [ys - ytn—1]<®s_lA*q)$ﬁsa e,;)(ii ds

tn—-1



whereas from (3.9)

Tn =1+ AQ; A" D, ][50t + [Ye, — Yo |(Prorre)
I+ AR AT e ,
=[I+ Aq);l_lA*q)tﬁ_l]En_l + (Yt = Ytn_ [P ei)ei
— Ay, — ytn_l]@;l_lA*q)tnfjn_l,ei)ei
+ Alye, — Yt 1 [{Pr_1, e,-)@;zl_lA*Qtnile,;.
The difference e, = 7, — 7, satisfies the following recur-
rence:

en =[I +AD;!

tn—1

APy, Jen—1

tn
+/ [®;'A*®, T, — ;' A*®y Ty, ] ds

tn_1

+ (Yt = Ytn1 )P, — Dp> €i)es
7 e @ A e ds
ne1
+ Alye, — Yoo (L, A, Py ei)es
— Ay, — Y1, P> ei)éal_lA*étn_lei.
Therefore
lealyll < len—1[y]le®® + KA[A + wa(y)]

where the constants C' and K depend on ||y||, and hence (3.10)
follows by the discrete Gronwall lemma. O

Corollary 3.4: With the definitions of Theorem 3.3, for all
n,Asuchthat 0 < ¢, <T

lo(Hz, ) y] — o(Hp)[yll < K'[A + wa(y)]

where the constant K’ depends on ||y]|.
Proof: Indeed

3.1

Consider the EM update formulas (2.3). From the definition
of Ji we get easily

T
E[J;|yr] = /0 E[(Xy,e:)|YVr] dt (4.1)

where the integrand is the smoothed estimate of {(X},e;),0 <
t < T}, given Yr, computable from the smoothing proba-
bility distribution given below. However, the computation of
E[N7|Yr] and E[G%|Yr] is not as straightforward, as we
will see.

State: Following [10], we define the continuous-time
smoother for state estimation, as

g = E[X:Ar|Vr].
This is an N-dimensional vector, whose ith component is

A{ars€5) = E[l(x,ze) A7) V1] = (Dt €i){vs,€5).  (4.2)
Here p; = o(X}) is the unnormalized filter defined in Section
II-C, and v, is the solution of the backward SDE, dual to (2.5)

T T
v =1 +/ Avs ds +/ Bug dys,. 4.3)
t t

The stochastic integral in (4.3) is a backward Ito integral. Here,

duality means that (g, 1) = (ps,vy) is independent of ¢.
Discussion 4.1: To give a hint of the proof of (4.2), we start

from the following representation for the solution of (4.3):

(ve, €0) = Bv e [A7|V7]
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Discussion 4.2: Another way of computing o(Hr) for
Hy = N}’,Gi‘p or Ji, is to obtain an equation for
(o(HX4),v¢). One would then obtain o(Hr) as o(Hp) =
<O'(HTXT),UT>, since vp = 1.

The equations for (o(H:X;),v:) are derived below as
in Campillo-LeGland [1], using duality arguments and the
chain rule of the two-sided stochastic calculus introduced
and studied in Pardoux—Protter [11]. Roughly speaking, the
two-sided stochastic integral can be defined as follows: Let
{ug, 0 < t < T (resp., {vt,0 < ¢ < T}) be the solution of
a forward (resp., a -backward) stochastic differential equation
driven by the Brownian motion {y;,0 < ¢t < T} on (Q, F, P).
Then, by definition

/ J (e, ve) dyt_hme(utn 008 ) Wt = Ytasy)

n=1

where the limit is taken as the mesh of the partition 0 =
o< -+ <tp<--- <tpy =T goes to zero. If f(u,v) does
not depend on v, the two-sided integral coincides with the
forward Ito integral. Similarly, if f(w,v) does not depend on u,
the two-sided integral coincides with the backward Ito integral.
Finally (a simple form of), the chain rule for the two-sided
stochastic integral reads -

t t .
Uy = UgVs + / vy dty + / Uy dv,. 4.5)
s S

Details can be found in Pardoux-Protter [11].
Occupation Time: From (2.6) and (4.3), and using the chain
rule (4.5)

Ao (JiXe),ve) = (A*q(Jth),vt) dt +k(B0(JZXt),vt) dy;
+ (pe, ;) (v, ;) dt — (U(JtiXt),Avt) dt
— (o(J{Xt), Buy) dye -

= (ps, i) {ve, €5) dt = (qe, €;) dt.
Therefore
. . T
o(J3) = (o(JhXr), ur) = / (Goeydi (46)
0

which is the expected result (4.5).
Number of Jumps: From (2.7) and (4.3), and using the
chain rule (4.5)

d(o (NP Xy), 00) = (A* 0 (N X), ve)dt+ (Bo (N Xy), ve)day,

+aij(pey €3) (vs, e5)dt— (0 (N7 Xy), Avg)dt
—(o(N;? Xt), Bus)dy:
=a;;(ps, €;){ve, €5)dt.

Therefore

- .. T
(N} = (o(N Xz), vr) :aij/D (D e3){vr, e5) dt.
4.7)

» MARCH 1996

Level Integrals: From (2.8) and (4.3), and using the chain
rule (4.5)

o (G Xs),ve) = (A*0(GiXy), m)dt + (Bo(GiXy), ve)dys
+ (Pt €3) (v, €:)dys + i (D, €3)(ve, €5)dt
— (0(GiXy), Avy)dt — (0(GEXy), Bus)dy,

= (s, €:){ve, ei)dys + gilpe, €3){ve, €i)dt

= (qs, €s)dys + gilqe, eg)dl.

Therefore

o(Gr) =(o(GrXr), vr)

T T -
= / (CIt, ei) dys+ g / (fIta ei) dt
0 0
where the stochastic integral is a two-sided stochastic integral. -

Remark 4.3: The following equivalent expressions are ob-
tained as in Dembo and Zeitouni [4]:

T
o(Ghr) = /0 (s, €:) o dys (4.8)

where the stochastic integral is a generalized Stratonovich
integral, and

N T
o (Gir) = (ar, eiyr — / (i, i) dt

since {g;,0 < ¢t < T} is a finite variation process. Roughly
speaking, the generalized Stratonovich integral of the (not
necessarily adapted) process {u;,0 < .¢ < T} wurt the
Brownian motion {y;,0 < ¢t < T} is given by

T .
1 T
/ uz o dyy = lim E {———t X / Uy dt} (Yt = Ytoos)
0 n —in 1

where the limit is taken as the mesh of the partition 0 =
o< -+ <tp < --- <ty = T goes to zero. Details can be -
found in Dembo and Zeitouni [4].

Remark 4.4: The expressions given by (4.6)—(4.8) are the
continuous-time counterparts of the expressions arising in
the Baum—Welsh re-estimation formulas for the discrete-time

-HMM introduced in Section III-A. Indeed, the re- estlmatlon

formulas (2.3) read now
T
<pt7 e’L> ('Uta 8,7) dt

ro—
a;; = g

/(pt, Yoy, e;) dt

and

/ (Pt ei)(vt, ez) 0 dyt .
0 T _ , -
/ (e, eq)(ve, €5) dt
0

These -expressions are apparently obtained here for the first
time. It should be noticed that the smoothers presented in [7]
address the problem of computing E[H,|),] for 0 <.s < ¢,
whereas the purpose here is rather to compute E[Hp|Yr] by’
means of a smoother estimate fer the state.

/
9 =
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V. TIME DISCRETIZATION OF SMOOTHING EQUATIONS

We consider the following approximation for the backward
Duncan-Mortensen-Zakai equation (4.3)

“vp—1 = [+ AA|Y v, 5.1

which is dual to (3.2). The resulting approximation ¢,, to the
unnormalized smoothing probability distribution g, is given
simply by

(gns €:) = (Pn, €:)(Vn, €5). (5.2)

Because of the probabilistic interpretation associated with
this approximation, the conditional expectations involved
in the EM algorithm (3.3) are immediately given by the
Baum-Welsh re-estimation equations, which involve the
forward variable {p,,,0 < n < M} and the backward variable
{vn,0 £ n < M}. Our purpose here is to recover these
equations as an application of duality. Indeed, another way of
compute o(H)yy) for Hyy = N}&, Gi, or Ji,, is to obtain an
equation for (¢(H,,X,,),v,). One would then obtain o(Hys)

as O'(HM) = (G'(HMXM),’UM), since VM = 1.
Recall that M = [T/A] denotes the largest integer such
that MA < T.

State: See (5.2), to be compared with (4.2).
Occupation Time: From (3.4) and (5.1)

(U(J:;Xn)a Up) = (\I/nP*U(J:L—an—l)avn>
+ (Pn—1,€){(¥nP e, vpn)
= <U(Jviz—1Xn—1)7'Un—1)
+ (Pn-1, €} {Un-1,€).

Therefore
M

o(Jig) =(0(J3Xa)svar) = > _(Pn-1,€:)(vn_1, ) |

n=1
M
= Z<(In—1 [ ei)
n=1

to be compared with (4.6).
Number of Transitions: From (3.6) and (5.1)

(O(NF X ), vn) = (U P*0 (N1 Xn_1), vn)
+<pn 1€ (Un P ei, €5)(vn, €5)
—<0‘( 1Xn-1)s Un—1)
+ (Pn—hei)(‘I’nP €ir €5)(vn, €5).

(5.3)

Note that
(UnP*ei,e;) = aijA$] [¢] .,
Therefore, for i # j '
a(N3) = (o (N3 Xar), var)
M

fori # j.

= aijA Z(pn—la 6i><vna €j>¢{n/¢gn,1

n=1
M

=a;A Z(pn—l, e:)(vn, ;)7 5.4

n=1

to be compared with (4.7).

* Level Integrals: From (3.8) and (5.1)
(G(G;Xn);UVJ :(lll P*a ( G, 1Xn—l);Un>
+ z, (pn 1761>(‘I]np*eia'vn>
= <U(Gn—1Xn—1)a”n—1)‘ °
+ 25 (Pn-1, €){VUn-1,€;).
Therefore

o(Gy) = (o(Gly Xor), var)

25 (pn—1, €Y (Un-1, )

I
M=

N
Sp
)

3

!

=

Iy

(5.5)

to be compared with (4.8).
Remark 5.1: The re-estimation formulas (3.3) read now

M

Z <pn—1a 8,’)('07” ej)"abg;

s on=1
7l'ij—7TU M =

Z (pn—la e;)(VUn—1, &)

n=1
and
M
25 {pn-1,€:)(Vn-1,€:)
1 n=1
9= "1
5 pn 1761 'Un 17el>
n=1

Not surprisingly, these expressions coincide exactly with the

expressions arising in the Baum—Welsh re-estimation formulas

for the discrete-time HMM introduced in Section III-A.

The cost for computing the smoothed estimates of the
state, occupation time, number of transitions, and level in-
tegrals at each time instant are O(N?). Because either the
forward variables p,,n = 1,---, M or the backward variables
Un,M = 1,- -+, M must be stored to compute the fixed-interval
smoothed estimates, the memory required is O(NM).

The following error estimate can be proved.

Proposition 5.2: For all n, A such that 0 <t, <T

ve, — vl < K"[A +wa(y)]

where the constant K" depends on |jy||.
However, what is really important for the estimation prob-
lem is to estimate the difference

o(Hr) ~ o(Hs) = (0(Hep Xew )y v1e) — {0 (Hyt Xar), var)

assuming tps = 7. This was already the object of the Corollary
3.4.

VI. NORMALIZATION AND VARIANCE ESTIMATION

In this section we first consider normalization of the various
filters and smoothers. Then we discuss estimation of the noise
variance.
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A. Normalization

To avoid numerical overflow, it is important to normalize
the numerical approximation schemes, see [1] and [8]. The
normalized schemes are: .

Filtering

State: Denoting the normalized state estimate as 7,, we
have

n =Y P, _1/cn 6.1

with initial condition 7y, where the normalization constant ¢,
is defined by

Cp = <‘I/nP*7rn_1, 1)

For H, = J.,N¥ or G¢, we define
T(HpXn) = 0(HpnX0)/Vn
where

'Yn = (p'ml) = Cp - Cp—-1-""C1-

The remaining normalized filters are
Occupation Time:

w(JiXn) = [WaP*r(Jp 1 Xno1) + (Tno1, ) U P eil/en

with initial condition 7(JEX,) = 0.
Number of Transitions:
r(N9X,) = [V, P*r(N2 X, 1)
+ (Wn—ly ez><\pnP €4, ej>ej]/cn
with initial condition 7(Ng’ Xg) = 0.
Level Integral:

m(GE X)) = [V, P*r(G_ 1 Xn_1)
+ 28 (1, e) VU Pres] fcn
with initial condition = (G%Xo) = 0.

The re-estimation formulas (3.3) read now

= <7T(Ng\151XM)’1>
v (X)), 1)
and
g = (@K 1)
C (T X ), 1)
Smoothing

State: With ¢,, defined as above, define
Up—1 = PWnu,/cp (6.2)

with initial condition (at final time) u3; = 1. Note that (6.1)
and (6.2) are dual, and u,, = vpY,/vm. It follows that
(anun} = <p7‘“vn>/7M = (vavM>/'7M =1

The normalized approximations for the conditional expecta-
tions are easily obtained from (5.3)—(5.5), and the re-estimation

formulas (3.3) read now
M

Z (Tp—1, ei)(”n; e])"ﬁ%/cn

/ —_ .

Ty = Wi5 ™ M
E 7rn 1,€1> Un— laez>
n=1

and

Mk

Z7€<7rn—11 ez’><un—17 6i>

n=1 ‘

g =

Mk

(W'n—l: ei)(“n—lv 6i>
1 N

3
Il

B. Estimation of Noise Variance

So far we have assumed that the variance of the observation
noise {w;,t > 0} is known, and for simplicity we assumed it
to be one. When the variance of {w;, ¢ > 0} is a known value
B? (say), the appropriate filtering equations ‘can be obtained
by a simple scaling.

In continuous time, it is not possible to obtain an MLE of
the variance of {w;,¢ > 0} because measures corresponding to
Wiener processes with different variances are not absolutely
continuous, see Liptser and Shiryayev [9]. However, in dis-
crete time, we can appeal to an underlying Lebesgue measure
and use densities with respect to this Lebesgue measure to
compute Radon—Nikodym derivatives of observation processes
with different noise variances. So in discrete time, the MLE
estimate of the observation noise variance can be approximated
using the EM approach as follows.

If the variance of {wy,t > 0} is (2, then {w2,n >
0} defined in Section III-A is a white Gaussian sequence
with variance 3?/A. Now consider the EM update from the
estimate g, to ¢',(’, obtained by maximizing the func-
tion Q(,(g,0)). Write P and P’ for the respective prob-
ability measures. Consider the Radon-Nikodym derivative
dP'[{dP|x,, = Ay, where M = [T/A] is the largest integer
such that MA < T and :

1 p{_lzﬁ - (g’aXn—l)P}
N B'?/A 252 /A
xp{_lz‘:\ 1>12} B
W
Then we can write
Q((9,0)) = E[log Apr| 2]

- <97‘Xn-
262/ A

M A
————2—10g(,3 /A) + 5]@6
N ' M
’ {Z[J?wgiz - 2Gy gl + Z‘lzy?lz}
=1 n=1 .
+ f(g,8)
where f(g,03) is independent of (¢'.8"), Gy = E[G| Za],
and J}i; = E[J};|Zx]. Maximization of Q(-, (g, 3)) yields
4= E[G?'WIZM]
b B[yl 2]
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A gy Js Gy Gy Gy % Error
Actual 13.5474 20.2009 6.2599 ~13.7292 0.1509 6.3712 —
Filters 13.2370 19.5833 '6.1616 ~-13.2830 0.1228 6.1639 15.0350
Smoothers 13.6945 | 19.8642 6.4393 —-13.7505 0.1189 6.4357 7.2700
Nyg - Nys Ny Nog N3 N3y
Actual 140 87 103 46 123 / 10
Filters 134.2215 94,5224 96.0915 44.3199 132.7201 6.1707
Smoothers L 134.2215 94.5224 96.0915 |  44.3199 132.7201 6.1707
Jl Jz J3 Gl G2 G3 % Error
Actual 13.5474 20.2009 6.2599 —13.9103 0.3019 6.4824 —
Filters 13.1473 19.7305 6.1081 —13.2535 0.3153 6.0072 30.7100
Smoothers 13.6059 20.0113 6.3809 —13.7096 0.3185 6.2814 22.3150
Ny Niz Ny N3 N3, Nip
Actual 140 87 103 46 123 10
Filters 134.4378 94.8396 98.9042 41.4689 130.3399 6.0512
-Smoothers 134.4378 94.8396 98.9042 41.4689 130.3399 6.0512

which is the same expression as in (3.3), and

{Z!zﬂz Zg@E[G |ZM} (63)

n=1

which is the EM update for the noise variance.

Remark 6.1: The right-hand side of (6.3) is related to
the quadratic variation (y)r = B2T (which is observed in
principle and can be used to estimate the variance 8%) of the
continuous-time observation process. Indeed

{le P~ ZQZE[G |ZM}
| TZlyt

n=1

— Ytny |2 + O(Az)

~ %(?}OT’ aSAl[)'

VIL

In this section we present computer simulations to illustrate
and compare the performance of the discretized filter-based
and smoother-based EM algorithms. The normalized equations
presented in Section VI-A were used.

A 3-state HMM was generated with parameters A, g given

NUMERICAL EXAMPLES

by
=17 10 7 -1
A= 5 -7 2 g= 0j.
' 20 1 =21 1

The following tables (at the top of this page) show the actual
values of the occupation times, level integrals, and numbers of

jumps, and the estimated values computed using the filtering
and smoothing equations. The percentage errors for the state
estimates are also shown.

‘1. Simulation of the filters and smoothers, with A =
0.002,7 = 40,M = 20000. Observation noise variance
B = 0.05, assumed known. True values of A and g are used
(see the table at the top of this page).

2. Simulation of the filters and smoothers, with A =
0.002,T = 40,M = 20000. Observation noise variance
B = 0.1, assumed known. True values of A and g are used
(see the second table at the top of this page).

3. Simulation of the EM algorithm, using the above true
parameters A, g, and with A = 0.002,T = 40, M = 20000.
Observation noise variance S = 0.05, assumed known. Esti-
mated values of A and g are computed using the EM algorithm.

Fig. 1 contains graphs which show the evolution of the
parameter. estimates in terms of passes through the EM al-
gorithm, as well as a graph showing the improvement of the
state estimate percentage error as the EM algorithm progresses.
The conditional expectations needed in the EM algorithm were
computed using filters. The analogous results using smoothing
are shown in Fig. 2.

4. Simulation of the EM algorithm, using the above true

" parameters A, g, and with A = 0.002,T = 40, M = 20000.

The true value of the observation noise variance was 3 = 0.05,
assumed unknown and estimated using the method of Section
VI-B. Estimated values of A and g are computed using the
EM algorithm.

Fig. 3 contains graphs which show the evolution of the
parameter estimates and state estimate percentage error, as well
as that of the noise variance estimate. The final estimate for 3
is 0.0595076. The conditional expectations needed in the EM
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may incur additional round-off error, depending on how it is
coded. Use of an-implicit scheme may help. Also, we found
that it was necessary to use double precision arithmetic to im-
plement the algorithms, because of the exponentations needed
in computing ¥,, in the algorithms presented in Section VI-A.
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