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a b s t r a c t

Structural results impose sufficient conditions on the model parameters of a Markov decision process
(MDP) so that the optimal policy is an increasing function of the underlying state. The classical
assumptions for MDP structural results require supermodularity of the rewards and transition prob-
abilities. However, supermodularity does not hold in many applications. This paper uses a sufficient
condition for interval dominance (called I ) proposed in the micro-economics literature, to obtain
structural results for MDPs under more general conditions. We present several MDP examples where
supermodularity does not hold, yet I holds, and so the optimal policy is monotone; these include
sigmoidal rewards (arising in prospect theory for human decision making), bi-diagonal and perturbed
bi-diagonal transition matrices (in optimal allocation problems). We also consider MDPs with TP3
transition matrices and concave value functions. Finally, reinforcement learning algorithms that exploit
the differential sparse structure of the optimal monotone policy are discussed.

© 2023 Elsevier Ltd. All rights reserved.
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1. Introduction

Markov decision processes (MDPs) are controlled Markov
hains. Brute force numerical solution to compute the optimal
olicy of an MDP with a large state and action space is expensive
nd yields little insight into the structure of the controller. Struc-
ural results for MDPs are widely studied in stochastic control,
perations research and economics (Amir, 2005; Heyman & Sobel,
984; Puterman, 1994; Topkis, 1998). They impose sufficient
onditions on the parameters of an MDP model so that there
xists an optimal policy µ∗(x) that is increasing1 in the state x,
enoted as µ∗(x) ↑ x. Such monotone optimal policies are useful

as they yield insight into the structure of the optimal controller of
the MDP. Put simply, they provide a mathematical justification for
rule of thumb heuristics such as choose a ‘‘larger’’ control action
for a ‘‘larger’’ state. Also, since monotone optimal policies are
differentially sparse (see Section 5), optimization algorithms and
reinforcement learning algorithms that exploit this sparsity can
solve the MDP efficiently (Krishnamurthy, 2016; Mattila, Rojas,
Krishnamurthy, & Wahlberg, 2017).

✩ This research was partially supported by U.S. Army Research Office grant
W911NF-21-1-0093, Air Force Office of Scientific Research, USA grant FA9550-
22-1-0016 and National Science Foundation, USA grant CCF-2112457. The
material in this paper was not presented at any conference. This paper was rec-
ommended for publication in revised form by Associate Editor Valery Ugrinovskii
under the direction of Editor Ian R. Petersen.

E-mail address: vikramk@cornell.edu.
1 We use increasing in the weak sense to mean non-decreasing.
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The classical assumption (Heyman & Sobel, 1984; Puterman,
1994) for the existence of a monotone policy in a MDP relies
on supermodularity (Liu, Chong, Pezeshki, & Zhang, 2020; Topkis,
1998). By imposing supermodularity conditions on the rewards
and transition probabilities of the MDP, the classical proof shows
that the Q function in Bellman’s dynamic programming equation
is supermodular. (These conditions are reviewed in Section 2.)
With X = {1, . . . , X},A = {1, . . . , A} denoting a finite state space
and action space, recall (Topkis, 1998) that φ : X × A → R is
supermodular2 if it has increasing differences:

φ(x̄, ā) − φ(x̄, a) ≥ φ(x, ā) − φ(x, a), x̄ > x, ā > a. (1)

Then the well known Topkis’ theorem (Topkis, 1998) states that
supermodularity is a sufficient condition for

a∗(x) ∈ argmax
a∈A

φ(x, a) ↑ x. (2)

So if it can be shown for an MDP that its Q function is supermod-
ular, then Topkis theorem implies that there exists an optimal
policy that is monotone: µ∗(x) ∈ argmaxa∈A Q (x, a) ↑ x.

However, supermodularity is a restrictive sufficient condition
for the existence of a monotone optimal policy; it imposes con-
ditions on the rewards and transition probabilities that may not
hold in many cases.

2 More generally supermodularity applies to lattices with a partial order (Top-
is, 1998). In our simple setup of (1), Puterman (1994) uses the terminology
superadditive’.

https://doi.org/10.1016/j.automatica.2023.111024
https://www.elsevier.com/locate/automatica
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Recently, Quah and Strulovici (2009) introduced the Interval
Dominance condition which is necessary and sufficient for (2) to
hold. For the purposes of our paper, Quah and Strulovici (2009,
Proposition 3) gives the following useful sufficient condition3 for
φ : X × A → R to satisfy interval dominance:

φ(x̄, a + 1) − φ(x̄, a) ≥ αx,x̄,a
[
φ(x, a + 1) − φ(x, a)

]
, x̄ > x (3)

where the scalar valued function αx,x̄,a > 0 (strictly non-negative)
is increasing in a. We symbolically denote (3) as the condition
(φ, α) ∈ I. Comparing supermodularity (1) with I in (3), we see
that supermodularity is a special case of I when αx,x̄,a = 1. An
important property of I is that it compares adjacent actions a
and a+ 1. A more restrictive condition would be to replace a+ 1
with any action ā > a in (3). However, this stronger condition
(which in analogy to (1) can be called α-supermodularity) is
highly restrictive and does not hold for MDP examples considered
below.

Main Results. This paper shows how I in (3) applies to obtain
structural results for MDPs under more general conditions than
the classical supermodularity conditions. Theorems 1 and 2 are
our main results. To avoid technicalities we consider finite state,
finite action MDPs which are either finite horizon or discounted
reward infinite horizon. We present several MDP examples where
the Q functions satisfy I but not supermodularity, and the op-
timal policy is monotone. One important class comprises MDPs
with sigmoidal and concave rewards; since a sigmoidal function
comprises convex and concave segments, supermodularity rarely
holds. Such sigmoidal rewards arise in prospect theory (behav-
ioral economics) based models for human decision making (Kah-
neman & Tversky, 1979). A second important class of examples
we will consider involves perturbed bi-diagonal transition ma-
trices for which the standard supermodularity assumptions do
not hold. Bi-diagonal transition matrices arise in optimal alloca-
tion with penalty costs (Derman, Lieberman, & Ross, 1976; Ross,
1983). The result in the Appendix complements this classical
result for possibly non-submodular costs. Finally, a third class of
examples comprises MDPs with integer concave value functions.
Theorem 2 and Corollary 5 impose TP3 (totally positive of order
3) assumptions along with I to show that the optimal policy
is monotone. An extension of the classical TP3 result of Karlin
(1968, pg 23) is proved to characterize the I condition for MDPs
with bi-diagonal and tri-diagonal transition matrices. Such MDPs
model controlled random walks (Puterman, 1994) and arise in the
control of queuing and manufacturing systems.

2. Background. Supermodularity based results

An infinite horizon discounted reward MDP model is the tuple
(X ,A, (P(a), r(a), a ∈ A), ρ). Here X = {1, . . . , X} denotes the
finite state space, and we will denote xk ∈ X as the state at time
k = 0, 1, . . .. Also A = {1, . . . , A} is the action space, and we
will denote ak ∈ A as the action chosen at time k. P(a) are X × X
stochastic matrices with elements Pij(a) = P(xk+1 = j|xk = i, ak =

a), r(a) are X dimensional reward vectors with elements denoted
r(x, a), and ρ ∈ (0, 1) is the discount factor.

The action at each time k is chosen as ak = µ(xk) where µ

denotes a stationary policy µ : X → A. The optimal stationary

3 If αx,x̄,a is a fixed constant independent of x, x̄, a, then (3) is sufficient for
he single crossing property (Milgrom & Shannon, 1994), namely, RHS of (1) ≥ 0
mplies LHS of (1) ≥ 0. Supermodularity implies single crossing which in turn
implies interval dominance; see also Amir (2005) for a tutorial exposition. The
condition (3) is sufficient for interval dominance and is the main condition that
we will use.
 u

2

policy µ∗
: X → A is the maximizer of the infinite horizon

discounted reward Jµ:

µ∗(x) ∈ argmax
µ

Jµ(x),

Jµ(x) = Eµ{

∞∑
k=0

ρkr(xk, ak) | x0 = x}
(4)

The optimal stationary policy µ∗ satisfies Bellman’s dynamic pro-
gramming equation

µ∗(x) ∈ argmax
a∈A

{Q (x, a)}, V (x) = max
a∈A

{Q (x, a)},

Q (x, a) = r(x, a) + ρ

X∑
j=1

Pxj(a) V (j) (5)

An MDP with finite horizon N is the tuple
(X ,A, (P(a), r(a), a ∈ A), τ ) where τ is the X-dimensional

terminal reward vector. (In general P(a) and r(a) can depend
on time k; for notational convenience we suppress this time
dependency.) The optimal policy sequence µ0, . . . , µN−1 is given
y Bellman’s recursion: VN (x) = τx, x ∈ X , and for k = 0, . . . ,N ,

µ∗

k(x) ∈ argmax
a∈A

{Qk(x, a)}, Vk(x) = max
a∈A

{Qk(x, a)}

k(x, a) = r(x, a) +

X∑
j=1

Pxj(a) Vk+1(j) (6)

Monotone policies using supermodularity
The classical supermodularity assumptions for an MDP are:

(A1) Rewards r(x, a) ↑ x for each a.
(A2) Px(a) ≤s Px+1(a) for each x, a, where Px(a) is the xth row of

matrix P(a).4
(A3) r(x, a) is supermodular in (x, a).
(A4)

∑
j≥l Pxj(a) is supermodular in x, a for each l ∈ X .

(A5) The terminal reward τx ↑ x.

The following textbook result establishes Qk and Q are super-
modular; so the optimal policy is monotone:

Proposition 1 (Heyman & Sobel, 1984; Puterman, 1994). (i) For a
discounted reward MDP, under (A1)–(A4), the optimal policy µ∗(x)
in (5)5 ↑ x.

(ii) For a finite horizon MDP, under (A1)–(A5), the optimal policy
sequence µ∗

k(x), k = 0, . . . ,N − 1, satisfying (6) ↑ x.

3. MDP structural results using interval dominance

The supermodular conditions (A3), (A4) on the rewards and
transition probabilities, are restrictive. We relax these with the
interval dominance condition I defined in (3) as follows:

(A6) For βx,x̄,a > 0 and ↑ a, the rewards satisfy

r(x̄, a + 1) − r(x̄, a) ≥ βx,x̄,a
[
r(x, a + 1) − r(x, a)

]
, x̄ > x

4
≤s denotes first order stochastic dominance, namely,

∑X
j=l Px,j(a) ≤

X
j=l Px+1,j(a), l ∈ X .
5 More precisely, there exists a version of the optimal policy that is non-
ecreasing in x. (4) uses the notation ∈ since the optimal policy is not necessarily
nique.
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(A7) With x̄ > x and αx,x̄,a > 0 ↑ a, the transition probabilities
satisfy (recall ≥s denotes first order dominance)
Px̄(a + 1) + αx,x̄,a Px(a)

1 + αx,x̄,a
≥s

Px̄(a) + αx,x̄,a Px(a + 1)
1 + αx,x̄,a

.

(A8) There exist αx,x̄,a = βx,x̄,a for which (A6), (A7) hold.

Remark. If αa = βa = 1, then (A6) and (A7) are equivalent
to supermodularity conditions (A3) and (A4). Note that (A8) is
sufficient for the sum of two I functions to be I .

(A6) and (A7) compare adjacent actions a + 1 and a. A more
estrictive condition is to replace a + 1 with any action ā > a
in (A6) and (A7). This stronger condition does not hold in the MDP
examples below. This is the reason why the I condition is useful.

Main Result. The following is our main result.

Theorem 1. (i) For a discounted reward MDP, under (A1), (A2), (A6),
(A7), (A8), there exists an optimal stationary policy µ∗(x) satisfying
5) which is ↑ x.
(ii) For a finite horizon MDP, under (A1), (A2), (A5), (A6), (A7),
(A8), there exists an optimal policy sequence µ∗

k(x), k = 0, . . . ,N
satisfying (6) which is ↑ x.

emark. Theorem 1 also holds for average reward MDPs that are
nichain (Puterman, 1994) so that a stationary optimal policy ex-
sts. This is because our proof uses the value iteration algorithm,
nd for average reward problems, the same ideas directly apply
o the relative value iteration algorithm.

roof. The standard textbook proof (Puterman, 1994) shows via
nduction that for the finite horizon case, (A1), (A2), (A5) imply
hat Qk(x, a) ↑ x for each a ∈ A, and therefore Vk(x) ↑ x. The
induction step also constitutes the value iteration algorithm for
the infinite horizon case, and shows that Q (x, a) and V (x) ↑ x.

Next, since V (x) ↑ x, (A7) implies that for x̄ > x,
X∑

j=1

[
Px̄,j(a + 1) − Px̄,j(a)

]
V (j)

≥ αx,x̄,a
( X∑
j=1

[
Px,j(a + 1) − Px,j(a)

]
V (j)

)
(7)

Assumption (A6) implies the rewards satisfy I . Finally, (A8)
implies for x̄ > x,

r(x̄, a + 1) − r(x̄, a) +

X∑
j=1

[
Px̄,j(a + 1) − Px̄,j(a)

]
V (j)

≥ γx,x̄,a

[
r(x, a + 1) − r(x, a) +

X∑
j=1

[
Px,j(a + 1) − Px,j(a)

]
V (j)

]
for γ = α = β . Thus (Q , γ ) ∈ I implying that (2) holds. □

3.1. Example 1. MDPs with interval dominant rewards

Our first example considers MDPs with sigmoidal and con-
cave6 rewards specified in Example (i) below. Let us give some
visual intuition. Supermodularity is difficult to ensure since a
sigmoidal reward comprises a convex segment followed by a

6 Throughout this paper convex (concave) means integer convexity (con-
avity). Since x ∈ {1, . . . , X}, integer convex φ means φ(x + 1) − φ(x) ≥

(x)− φ(x− 1). We do not consider higher dimensional discrete convexity such
s multimodularity; see Section 5.
 p

3

concave segment. In Fig. 1(a), reward r(x, 1) is sigmoidal, while
r(x, 2) and r(x, 3) are concave in x. Since concave reward r(x, 3)
intersects sigmoidal reward r(x, 1) multiple times, the single
crossing condition and therefore supermodularity (A3) does not
hold. More directly, r(x, 3) − r(x, 1) is not increasing and so not
supermodular. But condition I (A6) holds. Specifically, r(x, 2) −

(x, 1) is single crossing, and r(x, 3) − r(x, 2) is single crossing.
ote that I does not require r(x, 3)− r(x, 1) to be single crossing.
Consider a discounted reward MDP. Assume:

Ex.1) For each pair of actions a, a + 1, assume there is state x∗
a

such that r(x, a+ 1) ≤ r(x, a), Px(a+ 1) ≤s Px(a) for x ≤ x∗
a .

Also r(x, a + 1) ≥ r(x, a), Px(a + 1) ≥s Px(a) for x ≥ x∗
a .

orollary 1. Consider a discounted reward MDP. Assume (A1), (A2),
Ex.1). Then Theorem 1 holds.

Compared to Proposition 1, Corollary 1 does not impose super-
odularity conditions on the rewards or transition probabilities.

Ex.1) is weaker than the single crossing condition.

roof. We verify that condition (A6), (A7), (A8) of Theorem 1
old:
First consider x < x̄ ≤ x∗

a . Since r(x, a) ≥ r(x, a + 1), and
r(x̄, a) ≥ r(x̄, a + 1), (A6) holds for all β ∈ [β∗

x,x̄,a, ∞) for some
β∗

x,x̄,a > 0. Also Px(a + 1) ≤s Px(a) implies (A7) holds for all
x,x̄,a ∈ [α∗

x,x̄,a, ∞) for some α∗

x,x̄,a > 0. So we can choose α =

= maxa{α∗

x,x̄,a, β
∗

x,x̄,a} independent of a so that (A8) holds.
Next consider x̄ > x ≥ x∗

a . Then (A6) holds for all β ∈ (0, β∗

x,x̄,a]

or some β∗

x,x̄,a > 0. Also Px(a + 1) ≥s Px(a) implies (A7) holds for
ll α ∈ (0, α∗

x,x̄,a] for some α∗

x,x̄,a > 0. Therefore, we can choose
= β = mina{α

∗

x,x̄,a, β
∗

x,x̄,a} independent of a so that (A8) holds.
inally, for x ≤ x∗

a and x̄ > x∗
a , (A6) and (A7) hold for all α, β > 0.

o Theorem 1 applies and µ∗(x) ↑ x. □

xample (i). Sigmoidal7 and Concave Rewards
The following MDP parameters satisfy Corollary 1: X = 201,
= 3. The action dependent transition matrices are Pi(1) =

i−1(1) + µ(eX − e1), µ =
0.004
X , ϵ =

0.05
X ,

Pi(a + 1) =

{
Pi(a) − ϵ(eX − e1), i ≤ 50,
Pi(a) + ϵ(eX − e1), i > 50

Here ei denotes the unit X-dimension row vector with 1 in the
ith position.

With θ = [2, X − 1, 20, 5, 80, −2, 5, 80, −3.5, 0.01],

r(x, 1) =
θ1

1 + exp( x−θ2
θ3

)
(sigmoidal) ,

(x, 2) = θ4(1 − exp(−
x
θ5

)) + θ6 (concave) ,

(x, 3) = θ7(1 − exp(−
x
θ8

)) + θ9 + θ10 x (concave)

(8)

ig. 1(b) shows the non-supermodular QN for N = 100, ρ = 0.9.
N (x, 3) − QN (x, 1) (broken line) intersects the horizontal axis
hree times; so single crossing does not hold. QN (x, 2) − QN (x, 1)
(blue line) is non-monotone (non-supermodular). Statement 1,
Corollary 1 applies; so the optimal policy is monotone.

7 Sigmoidal rewards/costs are ubiquitous. They arise in logistic regression,
rospect theory in behavioral economics, and wireless communications.
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xample (ii). Prospect theory based rewards
In prospect theory (Kahneman & Tversky, 1979), an agent

human decision maker) a has utility r(x, a) that is asymmetric
igmoidal in x. This asymmetry reflects a human decision maker’s
isk seeking behavior (larger slope) for losses and risk averse
ehavior (smaller slope) for gains. With X an even integer, the
rospect theory rewards are asymmetric sigmoidals:

(x, a) =
2(µ (x − 1))θ (a)

1 + (µ (x − 1))θ (a)
− 1, µ = 2/(X − 2), θ (a) > 1 (9)

so they cross zero at x = X/2. The shape parameter θ (a) deter-
mines the slope of the reward curve r(x, a).

Suppose the agents (investment managers) range from a = 1
(cautious) to a = A (aggressive); so the shape parameter θ (a) ↑ a.
The value of an investment evolves according to Markov chain xk
with transition probabilities P(ak) based on agent ak. Since agent
a+ 1 is more aggressive (risk seeking) than agent a in losses and
gains, it incurs higher volatility. So the xth row of P(a) and P(a+1)
satisfy

Px(a + 1) ≤s Px(a), x <
X
2

; Px(a + 1) ≥s Px(a), x ≥
X
2

(10)

he aim is to choose the optimal agent ak at each time k to
aximize the discounted infinite horizon reward. Since r(x, a) is
ingle crossing but not supermodular, (A3) does not apply.

orollary 2. Consider a discounted reward MDP with r(x, a) spec-
fied by (9) and θ (a) ↑ a. Assume (A2), (10) hold. Then Theorem 1
olds.

The proof follows from Corollary 1 with x∗
a = X/2.

.2. Example 2. Interval dominant transition probabilities

orollary 3. Consider the discounted reward MDP with r(x, a) =

(x) where φ ↑ x and non-negative. Suppose the ith row of
ransition matrix P(a) is

i(a) = p + ∆i,a (eX − e1) (11)

ere ei denotes the unit X-dimension row vector with 1 in the ith
osition. p is an arbitrary X-dimensional probability row vector.
lso ∆1,a = 0, ∆i,a ∈ [0, 1] are ↑ i, and satisfy I (3). (Also,
i,a ≤ min{p1, 1 − pX } to ensure P(a) is valid transition matrix.)
hen Theorem 1 holds.
4

Compared to supermodularity (A4) of the transition probabil-
ties, Corollary 3 imposes weaker conditions: ∆ satisfy I (3) and
can be any probability vector. Since ∆ only needs to satisfy
(suitably scaled and shifted to ensure valid probabilities), (11)
ffers considerable flexibility in choice of the transition matrices.

roof. Reward r(x, a) = φ(x) satisfies (A1), (A6) for all βx,x̄,a >
. Also ∆x,a ↑ x implies (A2) holds. Next let us verify (A7).
sing (11), we need to verify

∆x̄,a+1 − ∆x̄,a)
∑
j≥l

(eX − e1)′ej

αx,x̄,a
[
(∆x,a+1 − ∆x,a)

∑
j≥l

(eX − e1)′ej
]

(12)

here αx,x̄,a > 0 ↑ a. Since
∑

j≥l(eX − e1)′ej ≥ 0, clearly ∆i,a

atisfying (3) for some αx,x̄,a > 0 ↑ a is a sufficient condition
or (12) to hold. Since βx,x̄,a > 0 is unrestricted, we can choose
x,x̄,a = αx,x̄,a. Hence (A8) holds. Thus Theorem 1 holds. □

xample. Suppose p is an arbitrary probability vector, and ∆ is
hosen as the rewards (8) suitably scaled and shifted. Then the
ransition matrices inherit the sigmoidal and concave structures
f Section 3.1.

.3. Example 3. Perturbed bi-diagonal transition matrices

This section illustrates the I condition in MDPs with per-
urbed bi-diagonal transition matrices. The Appendix discusses a
inite horizon MDP example in optimal allocation problems with
enalty costs (Derman et al., 1976; Ross, 1983). It also has appli-
ations in wireless transmission control (Ngo & Krishnamurthy,
010).
Consider an infinite horizon discounted reward MDP with

ϵ(a), a ∈ A specified by parameter pa ∈ [0, 1] are Pϵ
X,X−1(a) =

a, Pϵ
X,X (a) = 1 − pa

Pϵ
11(a) = 1 − (A − a) ϵ, Pϵ

1,X (a) = (A − a) ϵ,
Pϵ
ii (a) = 1 − pa − (A − a) ϵ, Pϵ

i,i−1(a) = pa,
ϵ
i,X (a) = (A − a)ϵ, i = 2, . . . , X − 1

(13)

here ϵ ≪ 1 is a small positive real. We assume that pa ↑ a.
hen ϵ = 0, Pϵ(a) are bi-diagonal transition matrices; so ϵ can
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Fig. 2. The Q -function is not-supermodular for an MDP with perturbed bi-
iagonal matrices; yet the optimal policy µ∗(x) is increasing in state x by
orollary 4.

e viewed as a perturbation probability of a bi-diagonal transition
atrix.
Supermodularity (A4) of the transition matrices (13) holds if

≥ pa+1 − pa. In this section we assume ϵ is a small parameter
with ϵ ≤ mina pa+1 − pa, so that (A4) does not hold. There-
fore, textbook Proposition 1 does not hold. We show how the I
condition and Theorem 1 apply.

Remark. In our result below, to show condition I holds, we
choose αa = βa = (pa+1 − pa)/ϵ = γa. If pa is differentiable
rt a, then as ϵ → 0, i.e., for an MDP with bi-diagonal transition
atrices, this can be interpreted as choosing αa = βa = dpa/da.

Corollary 4. Consider a discounted cost MDP with transition prob-
abilities (13). Assume pa ↑ a and pa+1 − pa = γaϵ for some positive
real number γa increasing in a. Assume (A1) and that

r(i + 1, a + 1) − r(i + 1, a) ≥ βa [r(i, a + 1) − r(i, a)] (14)

or some βa ↑ a with βa ≥ γa. Then µ∗(x) ↑ x.

roof. We verify that the assumptions in Theorem 1 hold. (A1)
olds by assumption. From the structure of Pϵ(a) in (13) it is clear
hat (A2) holds. Considering actions a and a + 1, it is verified
hat (A7) holds for all αa ≥ (pa+1 − pa)/ϵ = γa. Next by
assumption (14), (A6) holds for βa ≥ γa. So we can choose
αa = βa ≥ γa, and so (A8) holds. □

Example. A = 2, X = 6, p1 = 0.3, p2 = p1 + 20ϵ, ϵ = 10−3,

= 0.9, N = 200, r ′
=

[
1 3.5 6 6 11 43
0 2 3 6 12 63

]
. Given the

ransition probabilities, we choose α ≥ 20. Also for the rewards,
e choose β = 20 in (14). So Corollary 4 holds. Fig. 2 shows
N (x, a) is not supermodular, yet the optimal policy is monotone
ith µ∗(i) = 1 for i ∈ {1, 2, 3, 4} and µ∗(i) = 2 for i ∈ {5, 6}.

. Example 4. MDPs with concave value functions

Theorem 1 used first order dominance and monotone costs to
stablish I and therefore monotone optimal policies. In compar-
son, this section extends Theorem 1 to MDPs where the value
unction is concave. We use second order stochastic dominance
 f

5

nd concave costs to establish I and therefore monotone opti-
al policies. The results below assume a TP3 transition matrix;
ee Karlin (1968) for the rich structure involving their dimin-
shing variation property. For convenience we minimize costs
nstead of maximize rewards.

(C1) Costs c(x, a) are ↑ x and concave in x for each a.
(C2) P(a) is TP3 with

∑X
j=1 jPij(a) ↑ i and concave in i. Totally

positive of order 3 means that each 3rd order minor of P(a)
is non-negative.

(C3) For βx,x̄,a > 0 and ↑ a, c(x̄, a+ 1)− c(x̄, a) ≥ βx,x̄,a
[
c(x, a+

1) − c(x, a)
]
, x̄ > x.

(C4) For αx,x̄,a > 0 and ↑ a, Px̄(a+1)+αx,x̄,a Px(a)
1+αx,x̄,a

>2
Px̄(a)+αx,x̄,a Px(a+1)

1+αx,x̄,a
,

x̄ > x where >2 denotes second order stochastic domi-
nance.8

(C5) Terminal cost τx ↑ x and concave in x.

Remarks. (i) As shown in the proof, (C1) (concavity), (C2), (C5)
imply the value function is concave and increasing. These to-
gether with (C3), (C4) and (A8) imply I holds and so the optimal
policy is monotone.

(ii) (C2) generalizes the assumption that
∑

j jPij is linear in-
creasing in i. The classical result in Karlin (1968, pg 23) states:
Suppose P is a TP3 transition matrix and

∑
j jPij is linear in-

reasing in i. If vector V is concave, then vector P V is concave.
However, for bi-diagonal and tri-diagonal transition matrices,∑

j jPij is concave (or convex) and not linear in i (see examples
elow). This is why we introduced (C2). Since the classical result
equires

∑
j jPij being linear in i, it no longer applies. So we will

rove a generalization that handles the case where
∑

j jPij is
oncave in i (see Lemma 1).

heorem 2. (i) For a discounted cost MDP under (C1)–(C4), (A8),
ptimal policy µ∗(x) ↓ x.
ii) For a finite horizon MDP, under (C1)–(C5), (A8), optimal policy
equence µ∗

k(x) ↓ x, k = 0, . . . ,N.

Corollary 5. Consider the modified assumptions: (C1): increasing
eplaced by decreasing; (C2) concave replaced with convex; (C3):
nequality involving costs reversed; (C4): >2 replaced by convex
dominance9 >c ; (C5): increasing replaced by decreasing. Under
these assumptions and (A8), Theorem 2 holds with the modification
µ∗(x) and µ∗

k(x) ↑ x.

Proof of Theorem 2. We prove statement (ii). The proof of
statement (i) is similar and omitted.

First we show by induction that Vk(i) ↑ i for k = N, . . . , 1.
y (C5), VN (i) = τi ↑ i. Assume Vk+1(i) ↑ i. TP3 (C2) im-
lies TP2 which preserves monotone functions (Karlin, 1968,
g 23; Lehmann & Casella, 1998), namely,

∑
j Pij(a)Vk+1(j) ↑

. This together with (C1) implies Qk(i, a) ↑ i. Thus Vk(i) =

ina Qk(i, a) ↑ i.
Next we show by induction that Vk(i) is concave in i. By (C5),

N = τ is concave. Assume Vk+1 is concave. Then (C2) implies
j Pij(a) Vk+1(j) is concave in i (see Lemma 1). Since c(i, a) is

oncave by (C1), it follows that Qk(i, a) = c(i, a)+
∑

j Pij(a) Vk+1(j)
s concave in i. Since concavity is preserved by minimization,
k(i) = mina Qk(i, a) is concave. Finally, Vk(i) increasing and

8 If p, q are probability vectors, then p >2 q if
∑

l≤m
∑

j≤l pj ≤
∑

l≤m
∑

j≤l qj
or each m. Equivalently, p >2 q iff f ′p ≥ f ′q for vector f increasing and concave.
ecall ′ denotes transpose.
9 If p, q are probability vectors, then p >c q if

∑
l≥m

∑
j≥l pj ≥

∑
l≥m

∑
j≥l qj

or each m. Equivalently, p > q iff f ′p ≥ f ′q for f increasing and convex.
c
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oncave in i and (C4) implies (7) holds for all αx,x̄,a ≥ 1. Then
with (C3), (A8), the proof is identical to Theorem 1. □

The following lemma used in the proof of Theorem 2 extends
the result in Karlin (1968, pg 23).

Lemma 1. Suppose P satisfies (C2). If V is concave and increasing,
then P V is concave and increasing.

Proof. First TP3 preserves monotonicity, so PV is increasing.
Next, since V is concave and increasing, then for any a > 0 and
b ∈ R, V (j) − (aj + b) has two or fewer sign changes in the order
−, +, − as j increases from 1 to X . Let φi(a, b) =

∑
j Pij(aj + b).

Since P is TP3, the diminishing variation property of TP3 implies∑
j Pij Vj−φi(a, b) also has two or fewer sign changes in the order

−, +, − as i increases from 1 to X . Assume two sign changes
occur; then for some i1 < i2,

∑
j Pij Vj ≥ φi(a, b) for i1 ≤ i ≤ i2.

Since φi(a, b) is integer concave in i by (C2), it lies above the
line segment Li that connects (i1, φi1 ) to (i2, φi2 ). So

∑
j Pij Vj ≥

φi(a, b) ≥ Li, i1 ≤ i ≤ i2 Finally, for arbitrary i1 < i2 ∈ {1, . . . , X},

we can choose a =

∑
j Vj(Pi2,j−Pi1,j)∑
j j(Pi2,j−Pi1,j)

and b =
∑

j Pi1,jVj − a
∑

j j Pi1,j

so that
∑

j Pij Vj = φi(a, b) = Li at i = i1, i2. Clearly,
∑

j Pij Vj ≥ Li
for arbitrary i1 ≤ i ≤ i2 and

∑
j Pij Vj = Li for i = i1, i2 implies∑

j Pij V (j) is concave. □

Example (i). Bi-diagonal transition matrices
Theorem 2 applies to bi-diagonal transition matrices with

possibly non-supermodular costs; this is in contrast to Section 3.3
where we considered perturbed bi-diagonal matrices. Consider an
MDP with bi-diagonal transition matrices Pi.i(a) = 1−pa, P1,i+1 =

pa, PX,X (a) = 1, a ∈ {1, . . . , A}. Then
∑

j jPij(a) = i + pa for
i < X and X for i = X; so

∑
j jPij(a) is increasing and concave

in i ((C2) holds). Assume pa ↓ a. Then (C4) is equivalent to∑
l≤m

∑
j≤l Px̄,j(a + 1) − Px̄,j(a) ≤ αx,x̄,a(

∑
l≤m

∑
j≤l Px,j(a + 1) −

Px,j(a)). Since pa ≥ pa+1, it follows that (C4) holds for all αx,x̄,a ≥

1. If (C1), (C3) hold for some βx,x̄,a > 1, then Theorem 2 holds.
Numerical example. Consider a discounted cost MDP with A =

, X = 50, p1 = 0.8, p2 = 0.7, ρ = 0.95, N = 200,
c(x, 1) = θ1x2 + θ2x + θ3, c(x, 2) = θ4

(
1 − exp(θ5x + θ6)

)
,

θ = [−0.01, 1, 8.8, 25, −0.1, −0.4]. It can be verified that the
cost is not supermodular, but the conditions of Theorem 2 are
satisfied. So the value function is concave and optimal policy is
decreasing. Fig. 3 shows QN (x, a) is not submodular.

Example (ii). Tri-diagonal transition matrices
Corollary 5 applies to MDPs with tri-diagonal transition matri-

ces where Pi−1,i(a) = pa, Pi+1,i = qa, Pii = 1 − pa − qa, P11(a) =

1, PX−1,X = 1 − sa, PX,X = sa. If P(a) is TP3 and qa < pa,
sa > 1+qa−pa hold, then

∑
i jPij(a) is increasing and convex in i;

so modified (C2) holds. Also, if qa ↑ a, pa ↓ a, qa+1−qa ≥ pa+1−pa,
sa+1 − sa > qa+1 − qa + pa − pa+1, then convex dominance
(modified (C4)) holds for all α ∈ (0, 1]. If the costs are chosen
so modified (C1), and modified (C3) hold for βx,x̄,a ≤ 1, then
Corollary 5 holds and the optimal policy is monotone.
Numerical example. Consider a discounted cost MDP with A = 2,
X = 35, tri-diagonal transition matrices with p1 = 0.2, p2 =

0.1, q1 = 0.05, q2 = 0.1, s1 = 0.95, s2 = 1. Also ρ = 0.95,
N = 200, c(x, 1) = −(θ1 + θ2 x3), c(x, 2) = −(θ3 + θ4x3) where
θ = [15, 0.3/43, 1, 3/43

]. The cost c(x, a) is not submodular but
Corollary 5 holds. Fig. 4 shows the non-submodular Q (x, a).
N

6

Fig. 3. Non-submodular Q function for MDP with bi-diagonal transition matrix
that satisfies the assumptions of Theorem 2.

Fig. 4. Non-submodular Q function for MDP with tri-diagonal transition matrix
that satisfies Corollary 5.

5. Summary and discussion

The classical structural result for MDPs uses supermodularity
to establish the existence of monotone optimal policies. This
paper proposes a more general condition, which we call the I
condition, that was developed in the micro-economics literature.
We presented several examples of MDPs which satisfy I including
sigmoidal costs, and bi-diagonal/perturbed bi-diagonal transition
matrices. The structural results in Section 3, namely, Theorem 1,
Corollaries 1, 3, 4 and Theorem 3 used first order stochastic
dominance to establish I for several examples. of MDPs. In com-
parison, Theorem 2 in Section 4 discussed examples of I in
MDPs with concave value functions; we used TP3 assumptions
and second order (convex) stochastic dominance to prove the
existence of monotone optimal policies.
Discussion. Reinforcement Learning (RL) and Differential sparse Poli-
cies: Once the existence of a monotone optimal policy has been
established, RL algorithms that exploit this structure can be con-
structed. Q-learning algorithms that exploit the I condition can
be obtained by generalizing the supermodular Q-learning al-
gorithms in Krishnamurthy (2016). The second approach is to
develop policy search RL algorithms. In particular, when A is small
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nd X is large, then since µ∗(x) ↑ x, it is differentially sparse, that
is µ∗(x + 1) − µ∗(x) is positive only at A − 1 values of x, and
zero for all other x. In Mattila et al. (2017), LASSO based methods
are developed to exploit this sparsity and significantly accelerate
search for µ∗(x); they build on the nearly-isotonic regression
techniques in Tibshirani, Hoefling, and Tibshirani (2011). The idea
is to add a rectified l1-penalty

∑X−1
x=1 |µl(x) − µl(x + 1)|+ to the

cost in the optimization problem (here µl is the estimate of
the optimal policy at iteration l of the optimization algorithm).
Intuitively, this modifies the cost surface to be more steep in the
direction of monotone policies resulting in faster convergence of
an iterative optimization algorithm.

Appendix. Optimal allocation with penalty cost

This appendix discusses a finite horizon penalty-cost MDP
with perturbed bi-diagonal transition matrices (13). This has ap-
plications in optimal allocation problems with penalty costs (Der-
man et al., 1976; Ross, 1983) and wireless transmission con-
trol (Ngo & Krishnamurthy, 2010). We assume ϵ < pa+1 − pa; so
as discussed in Section 3.3 supermodularity condition (A4) does
not hold.

As in Example 4.2 in Derman et al. (1976) and Ross (1983,
pg.8), we consider an N-horizon MDP model. There are N-stages
to construct X components sequentially. If effort c(x, a) is allo-
cated then the component is constructed with successfully with
probability pa. Our transition matrices are specified by the per-
turbed bi-diagonal matrices (13). At the end of N stages, the
penalty cost incurred is τi if we are i components short, where
i = {1, . . . , X}, with τ1 = 0. Note that Ross (1983) considers a
continuous action space A = [0, A], c(x, a) = a where a ∈ A and
bi-diagonal matrices (ϵ = 0). Below we show how the I condition
applies to non-supermodular cost structures with perturbed bi-
diagonal matrices. Such cases cannot be handled by the convexity
based supermodularity in Ross (1983).

We consider the discrete action space A = {1, . . . , A} cor-
responding to discretization of the continuous valued actions:
Ā = {0, ϵ, 2 ϵ, . . . , (A − 1) ϵ}. Recall ϵ are perturbation
probabilities of the bi-diagonal transition matrices in (13). The
costs and transition probability parameter pa are

Costs: c(x, a) ϵ, pa+1 − pa = ϵ γa γa > 0. (A.1)

We make the following assumptions.

(A9) γa ≥ 1 and ↑ a. (This is relaxed in remark below.)
A10) Terminal cost τx convex and ↑ x with τ1 = 0. Cost c(x, a) ↓

x. (More generally, c̄(x, a) in (A.2) ↓ x.)

Main Result. We will work with the modified value function
Wk(x) = V ϵ

k (x)−τx. This is convenient since the terminal condition
is WN (i) = 0 for all i. The dynamic programming recursion (6)
expressed in terms of Wk(x) and minimizing the cumulative cost
(rather than maximizing the cumulative reward) is µ∗

k(x) =

argmina Q̄k(x, a), Wk(x) = mina Q̄k(x, a), k = 0, . . . ,N − 1,

Q̄k(i, a) = c̄(i, a) +
(
1 − pa − ϵ(A − a)

)
Wk+1(i)

+ paWk+1(i − 1)
c̄(i, a) = ϵ c(i, a) + pa (τi−1 − τi) + ϵ (A − a) (τX − τi),

i = 1, . . . , X − 1 (A.2)

Q̄k(X, a) = c̄(X, a) + paWk+1(X − 1) + (1 − pa)Wk+1(X),
c̄(X, a) = ϵ c(X, a) + pa(τX−1 − τX )

Theorem 3. Consider the N-horizon MDP with costs and transi-
tion probabilities specified by (A.1), (13). Assume (A9) and (A10).
7

Fig. A.1. Non submodular Q function for optimal allocation.

Suppose mina γa > 1 and the costs satisfy

τi+1 ≥ τX +
γ 2
a (τi − τi−1)

γa − 1
+

∆(i + 1, a) − γa∆(i, a)
γa − 1

(A.3)

or i = 2, . . . , X − 1 where ∆(i, a) = c(i, a + 1) − c(i, a) and
perturbation probabilities ϵ ∈

(
0,mina(pa+1 − pa)

)
. Then optimal

policy µ∗

k(i), k = 1, . . . ,N − 1 ↑ i.

Remarks. 1. Theorem 3 can be viewed as complementary result
to the structural result in Derman et al. (1976) and Ross (1983).
If we choose the same instantaneous cost as Ross (1983), namely
c(x, a) = f a for some constant f , then (A.3) becomes τi+1 ≥

τX +
γ 2
a (τi−τi−1)

γa−1 − f . But terminal costs satisfying this condition
yield monotone policies that are degenerate, namely, µ∗

k(i) = 1
for all i. So for c(x, a) = f a, the I condition does not yield a useful
result. It is necessary to exploit convexity of the value function,
as in Ross (1983), to obtain non-degenerate optimal policies. On
the other hand, the I condition (A.3) allows for non-submodular
costs and yields monotone policies (see examples below). For
such cases, it is not clear how to extend the convexity based
submodularity proof in Ross (1983) (which applies when ϵ = 0)
to the MDP (13) for arbitrary ϵ > 0.

2. (A9) is equivalent to pa ↑ a and convex. (A9) can be
relaxed to pa ↑ a by imposing stronger conditions on (A.3),
see (A.4). The convexity (A10) of terminal costs implies c̄(i, a)
in (A.2) is decreasing. Recall decreasing costs (A1) is used to show
submodularity (and Theorem 1).

Examples. We chose the MDP parameters in (13), (A.1) as X = 11,
A = 2, γa = 1.2, ϵ = 10−6, τ = [0, 1, 2, 4, 8, 15, 25, 40, 60,
90, 200]. Fig. A.1 displays Qk(x, 2) − Qk(x, 1) when c(x, 1) = 0,
c(x, 2) = ϵ(f + 2.5 x4I(x ≤ 3) − (x + 2)3), f = 103. Notice Q (x, a)
is not submodular. But Theorem 3 holds; so µ∗

k(x) ↑ x.

Proof of Theorem 3. Using (A.2), the proof follows straightfor-
wardly by verifying the assumptions in Theorem 1. □

Remark. Choosing α = γ̄ = maxa γa in the proof, we obtain a
stronger sufficient condition than (A.3):

τi+1 ≥ τX
γ̄ − 1
γa − 1

+
γ̄ γa (τi − τi−1)

γa − 1

+
∆(i + 1, a) − γ̄∆(i, a)

+
(γa − γ̄ )τi (A.4)
γa − 1 γa − 1
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ince α = β is a constant and not a dependent, (A9) is relaxed to
a > 1.
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